So Much More Than Candy

Very early on Christmas day…

So much more than candy

Santa has brought us the M&M store. The whole store!

So much more than candy

It’s play time!

So much more than candy

So much more than candy

So much more than candy

So much more than candy

So much more than candy

So much more than candy

So much more than candy

So much more than candy

Meet the characters…

Green

Age: Old enough to know better.
Weight: How dare you?
Likes: Simple candlelit dinners… in Paris.
Dislikes: Men and women who stare.
Shortcomings: Can sometimes be intimidating.
Appearance: Beauty of this magnitude can’t be described in words.

Red

Age: 30-something.
Weight: Perfect for his shell size.
Likes: When people blindly follow his advice.
Best feature: Genius IQ and physical prowess – the best of both worlds.
Shortcomings: Thinks he knows more than he does.
Hidden talent: Turns simple chores into complicated tasks.

Yellow

Age: We don’t know, but he is in touch with his inner child.
Weight: Around average… for a peanut with milk chocolate padding.
Likes: Pretty ladies and fluffy things.
Best friends: Red, because he seems to know a lot.
Best attribute: He sees the best in everything.
Appearance: Plump, yellow and all smiles.

Blue

Age: Old enough.
Weight: Let’s just say he keeps fit.
Likes: Moonlit nights, jazz, the ladies.
Best attribute: Confidence.
Hidden talent: He can outfox the would be snack fiends.
Appearance: If you’re lucky, he might make one.

Orange

Age: Stress makes him look older than he is.
Weight: He doesn’t eat. He doesn’t even sleep.
Turns-offs: People who want to eat him (a turn-off for everyone).
Dream: To be on the endangered species list.
Shortcomings: He thinks everyone is after him (he’s probably right).

Brown

Age: You dare ask?
Weight: Significantly lower than her IQ.
Likes: Power.
Hidden talent: Always being right.
Best attribute: Her big beautiful brain.
Appearance: Sexy and sophisticated.

A Very Cherry Christmas

A Very Cherry Christmas

Mmmm, Christmas desert!

A Very Cherry Christmas

Cherry Christmas pudding…

A Very Cherry Christmas

Cherry fruit cake with stars! That’s for me!

A Very Cherry Christmas

Mmmm, cherry trifle…

A Very Cherry Christmas

Cherry stollen… There’s no end to the cherry deserts!

A Very Cherry Christmas

Noggy egg with cinnamon to drink…

A Very Cherry Christmas

And the pièce de résistance, a cherry blackforest cake with big plump cherries!

A Very Cherry Christmas

We do have a dragon to feed 🙂

A Very Cherry Christmas

Have yourself a very cherry Christmas!

A Very Cherry Christmas

Feliz Navidad!
Vrolijk Kerstfeest!
Zalig Kerstfeest!
Joyeux Noël!
Merry Christmas!

‘T was the Night Before Christmas

A story book! Let’s read it!

Twas the night before Christmas

‘Twas the night before Christmas, when all through the house
not a creature was stirring, not even a mouse.
The stockings were hung by the chimney with care,
in hopes that St. Nicholas soon would be there.

Twas the night before Christmas

The children were nestled all snug in their beds,
while visions of sugar plums danced in their heads.
And Mama in her ‘kerchief, and I in my cap,
had just settled our brains for a long winter’s nap.

Twas the night before Christmas

When out on the roof there arose such a clatter,
I sprang from my bed to see what was the matter.
Away to the window I flew like a flash,
tore open the shutter, and threw up the sash.

Twas the night before Christmas

The moon on the breast of the new-fallen snow
gave the lustre of midday to objects below,
when, what to my wondering eyes should appear,
but a miniature sleigh and eight tiny reindeer.

Twas the night before Christmas

With a little old driver, so lively and quick,
I knew in a moment it must be St. Nick.
More rapid than eagles, his coursers they came,
and he whistled and shouted and called them by name:

“Now Dasher! Now Dancer!
Now, Prancer and Vixen!
On, Comet! On, Cupid!
On, Donner and Blitzen!
To the top of the porch!
To the top of the wall!
Now dash away! Dash away!
Dash away all!”

Twas the night before Christmas

As dry leaves that before the wild hurricane fly,
when they meet with an obstacle, mount to the sky
so up to the house-top the coursers they flew,
with the sleigh full of toys, and St. Nicholas too.

Twas the night before Christmas

And then, in a twinkling, I heard on the roof
the prancing and pawing of each little hoof.
As I drew in my head and was turning around,
down the chimney St. Nicholas came with a bound.

Twas the night before Christmas

He was dressed all in fur, from his head to his foot,
and his clothes were all tarnished with ashes and soot.
A bundle of toys he had flung on his back,
and he looked like a peddler just opening his pack.

Twas the night before Christmas

His eyes–how they twinkled! His dimples, how merry!
His cheeks were like roses, his nose like a cherry!
His droll little mouth was drawn up like a bow,
and the beard on his chin was as white as the snow.
The stump of a pipe he held tight in his teeth,
and the smoke it encircled his head like a wreath.
He had a broad face and a little round belly,
that shook when he laughed, like a bowl full of jelly.

Twas the night before Christmas

He was chubby and plump, a right jolly old elf,
and I laughed when I saw him, in spite of myself.
A wink of his eye and a twist of his head
soon gave me to know I had nothing to dread.

Twas the night before Christmas

He spoke not a word, but went straight to his work,
and filled all the stockings, then turned with a jerk.
And laying his finger aside of his nose,
and giving a nod, up the chimney he rose.

Twas the night before Christmas

He sprang to his sleigh, to his team gave a whistle,
And away they all flew like the down of a thistle.
But I heard him exclaim, ‘ere he drove out of sight,

“Happy Christmas to all, and to all a good night!”

Twas the night before Christmas

Magical Mischief

Magical Mischief

We have to decorate for Christmas…

Magical Mischief

We are playing with Lego. It’s fun! Did you know that Lego comes from the Danish phrase leg godt, which means “play well”? We are, we are…

Magical Mischief

We have to decorate for Christmas!

Magical Mischief

All the Lego has disappeared!

Magical Mischief

It’s back in the box!

Magical Mischief

Where’s the box?

Magical Mischief

Here’s the box!

Magical Mischief

Let’s get busy!

Magical Mischief

All done!

Magical Mischief

Let’s turn on the lights…

Magical Mischief

We are so good!

Magical Mischief

Santa, this is for you to fill up with lots of presents!

Magical Mischief

How many more sleeps to presents?

Magical Mischief

Did someone say presents?

Magical Mischief

Girls’ Lunch

It’s good to see us, isn’t it?

Girls Lunch

We went shopping for new dresses. Aren’t they pretty?

Girls Lunch

Mmmm, pappardelle con agnello… (pappardelle pasta cooked al dente and served with melt slowly braised lamb shoulder with mixed forest mushrooms, parmesan, bacon & cherry tomatoes in a white wine sauce)

Girls Lunch

Desert! Best part of lunch!

Tartufo and Panna Cotta
Tartufo and Panna Cotta

It’s great to spend time with pawsome friends. Beary Christmas!

Girls Lunch

Puffles’ Lego Mini World

Puffles Lego Mini World

Today it’s hard to imagine, but in the early 2000s LEGO, the company, started to lose money – a lot of money – as its key demographic of young boys began switching to video games, and other diversions more interactive than plastic construction bricks.

The once family run company was forced to bring in an outside CEO for the first time, you know, for that fresh perspective, and began to think hard about what new markets it might tap to start making up the shortfall, ie it actually did the hard thinking required to develop a company strategy! And a real strategy at that, focused on customers.

While assessing its key customer groups, it noticed that it had a lot of adults who liked to build with LEGO. These “Adult Fans of LEGO” or “AFOLs” became important to the company (money, money, money!), and one of them in particular came to the attention of the Danish brand. His name was Adam Reed Tucker, an architect, and he loved to build huge recreations of celebrated buildings from his hometown of Chicago.

When he pitched his idea of a premium series of sets that featured well-known architectural icons, LEGO was just desperate enough to let him try it. The result was the 2008 release of the first set in the LEGO Architecture range, a 69 brick reconstruction of the Sears (now Willis) Tower.

Any doubts LEGO might have had about the product were quashed when half the initial run sold out in ten days, and a new way of thinking was born within the company. Give the customers what they want! Seriously!

Rather than selling kits to kids and their parents in toy stores, AFOLs and BFOLs 🙂 can now pick up architectural models of the White House or the Brandenburg Gate in galleries and museum gift stores across the world.

There are now over 20 architecture sets, most designed by Adam Tucker. It’s the rare architect’s studio that doesn’t feature a model of Frank Lloyd Wright’s Fallingwater or Robie House, and there is a flourishing sub-culture of YouTube videos starring stop-motion of the models being assembled.

In July 2010, the National Building Museum opened the exhibition LEGO® Architecture: Towering Ambition, which featured 15 large-scale models of some of the most famous and impressive buildings in the world—made entirely of LEGO bricks. The models were all made by Adam Tucker, who decided to leave the world of traditional practice and become one of only 11 LEGO Certified Professionals in the world. As such, he creates models that may eventually become the basis for new LEGO kits and other products.

Adam Reed Tucker with LEGO® Architecture models. Courtesy of Adam Reed Tucker.
Adam Reed Tucker with LEGO® Architecture models.
Courtesy of Adam Reed Tucker.
A selection of LEGO® models created by Adam Reed Tucker. Courtesy of Adam Reed Tucker
A selection of LEGO® models created by Adam Reed Tucker.
Courtesy of Adam Reed Tucker

That explains why there is a strong US focus to the range of architecture sets, currently there are eleven from the US with two more on the way next year.

Washington D.C.

The White House
The White House

New York City

Rockefeller Centre Solomon R Guggenheim Museum United Nations Building Empire State Building
Rockefeller Centre
Solomon R Guggenheim Museum
United Nations Building
Empire State Building

Chicago

Willis Tower and Robie House
Willis Tower and Robie House

There is also an architecture set for the John Hancock Centre in Chicago which we have in safe keeping in LA 🙂

Seattle

Seattle Space Needle
Seattle Space Needle

Plano

Farnsworth House
Farnsworth House

The architecture set for Fallingwater in Pittsburgh is also in safe keeping in LA 🙂

The 1st of January 2015 will see the release Lincoln Memorial (Washington D.C.) and later in 2015 the Flatiron (Fuller) building (New York City) will be released.

The rest of the world is represented with six sets from Europe, four sets from Asia and one from Australia. The seventh set from Europe, the Lego House kit of the yet unfinished building in Billund, Denmark will be on the way to us shortly 🙂

France

Eiffel Tower and Villa Savoye
Eiffel Tower and Villa Savoye

UK

Big Ben
Big Ben

Italy

Leaning Tower of Pisa and Trevi Fountain
Leaning Tower of Pisa and Trevi Fountain

Germany

Brandenburg Gate
Brandenburg Gate

Singapore

Marina Bay Sands
Marina Bay Sands

South Korea

Sungnyemun
Sungnyemun

Dubai

Burj Khalifa
Burj Khalifa

Japan

Imperial Hotel
Imperial Hotel

Australia

Sydney Opera House
Sydney Opera House

The architecture series includes the architect series (7 sets) and the landmark series (15 sets). There are four architects featured: Frank Lloyd Wright, Ludwig Mies van der Rohe (Farnsworth House), Jørn Utzon (Sydney Opera House) and Le Corbusier (Villa Savoye). Frank Lloyd Wright certainly got the lion’s share with four of his designs featured – Solomon R Guggenheim Museum, Fallingwater, Robie House and Imperial Hotel.

Frank Lloyd Wright was an American architect, interior designer, writer and educator, who designed more than 1,000 structures and completed 532. About 300 survive today. Wright believed in designing structures that were in harmony with humanity and its environment, a philosophy he called organic architecture. This philosophy was best exemplified by Fallingwater (1935), which has been called “the best all-time work of American architecture”.

Solomon R Guggenheim Museum
Solomon R Guggenheim Museum
Fallingwater
Fallingwater
Fallingwater miniature model at Carnegie Science Center
Fallingwater miniature model at Carnegie Science Center
Robie House
Robie House
Imperial Hotel
Imperial Hotel

The hotel famously survived the Great Kantō earthquake of 1923, however the building had been damaged; the central section slumped, several floors bulged, four pieces of stonework fell to the ground, fans fell from the balcony, and electric ranges in the kitchen were toppled, starting a kitchen fire that was fairly quickly extinguished. The hotel suffered more damage during the war and was eventually demolished in 1967 and replaced with a high-rise structure. While most of Wright’s building was destroyed, the iconic central lobby wing and the reflecting pool were disassembled and rebuilt at The Museum Meiji-mura, a collection of buildings (mostly from the Meiji Era) in Inuyama, near Nagoya, where they are open to the public. So we’ll have to travel back in time to have a photo with the model in front of Wright’s Imperial Hotel!

We discovered the architecture series about a year ago, and despite some of the models no longer being in production, we have managed to acquire the entire series. Mind and money over matter. Including 4 of the 5 mega size kits. Later… And we are making our way around the world to visit all the landmarks… Four down, twenty-one to go…

A Figment of Your Imagination

Who says science isn’t fun? Visual illusions make great eye candy. But they also serve a serious purpose for researchers. How? Illusions push the mysterious and wondrous brain into revealing its secrets.

Illusory Motion Akiyoshi Kitaoka - Rotating Snakes
Illusory Motion

Some stationary patterns generate the illusory perception of motion. This unsettling effect is usually stronger if you move your eyes around the figure. For instance, in this illusion created by Akiyoshi Kitaoka, a professor of psychology at Ritsumeikan University in Japan, the “snakes” appear to rotate (it works better with the large image). But nothing is really moving other than your eyes!

If you hold your gaze steady on one of the black dots in the centre of each “snake”, the motion will slow down or even stop. Because holding the eyes still stops the false sense of motion, eye movements must be required to see it. Vision scientists have shown that illusory motion activates brain areas that are similar to those activated by real motion.

It is a fact of neuroscience that everything we experience is actually a figment of our imagination. Although our sensations feel accurate and truthful, they do not necessarily reproduce the physical reality of the outside world. Of course, many experiences in daily life reflect the physical stimuli that send signals to the brain. But the same neural machinery that interprets inputs from our eyes, ears and other sensory organs is also responsible for our dreams, delusions and failings of memory. In other words, the real and imagined share a physical source in the brain. So take a lesson from Socrates: “All I know is that I know nothing”.

One of the most important tools used by neuroscientists to understand how the brain creates its sense of reality is the visual illusion. Historically, artists as well as illusionists have used illusions to gain insights into the workings of the visual system. Long before scientists were studying the properties of neurons, artists had devised a series of techniques to deceive the brain into thinking that a flat canvas was three-dimensional or that a series of brushstrokes was indeed a still life.

Visual illusions are defined by the dissociation between the physical reality and the subjective perception of an object or event. When we experience a visual illusion, we may see something that is not there or fail to see something that is there. Because of this disconnect between perception and reality, visual illusions demonstrate the ways in which the brain can fail to re-create the physical world. By studying these failings, we can learn about the computational methods used by the brain to construct visual experience. Brightness, colour, shading, eye movement and other factors can have powerful effects on what we “see”.

Brightness Illusion
Brightness Illusion

In this illusion, created by vision scientist Edward H. Adelson of the Massachusetts Institute of Technology, squares A and B are the same shade of grey. (If you don’t believe it, print the photo, cut out the two squares and place them side by side.) This trick of the eye occurs because our brain does not directly perceive the true colours and brightness of objects in the world, but instead compares the colour and brightness of a given item with others in the vicinity. For instance, the same grey square will look lighter when surrounded by black than when surrounded by white.

Another example: when you read printed text on a page under indoor lighting, the amount of light reflected by the white space on the page is lower than the amount of light that would be reflected by the black letters in direct sunlight. Your brain doesn’t really care about actual light levels, and instead interprets the letters as black because they remain darker than the rest of the page, no matter the lighting conditions. In other words, every newspaper is also a visual illusion! Not to mention, it could be other forms of illusion as well.

Cupola of St Ignatius of Loyola church in Rome
Cupola of St Ignatius of Loyola church in Rome

The cupola of St. Ignatius of Loyola church in Rome is a great example of Baroque illusionism. The architect of the church, Orazio Grassi, had originally planned to build a cupola but died before finishing the church, and the money was used for something else. Thirty years later, in 1685, Jesuit artist Andrea Pozzo, was asked to paint a fake dome on the ceiling above the altar. Although Pozzo was already considered a master in the art of perspective, the results he accomplished could hardly be believed. Even today, many visitors to the church are amazed to find out that the spectacular cupola is not real but an illusion.

Architects soon realised that they could manipulate reality by warping perspective and depth cues to create illusory structures that defied perception. Need a big room in a small space? No problem. Francesco Borromini accomplished just that at the Palazzo Spada in Rome. Borromini created this spectacular trompe l’oeil illusion of a 37m long courtyard gallery into a 9m long space. There is even a life-size sculpture at the end of the archway! Not really. The sculpture looks life-size but is actually less than a meter tall.

Palazzo Spada Courtyard Gallery
Palazzo Spada Courtyard Gallery

How could we have missed it? Hundreds, perhaps thousands, of visual scientists, psychologists, neuroscientists, architects, engineers and biologists all missed it – until three years ago. The “it” in question is the leaning tower illusion, discovered by Frederick Kingdom, Ali Yoonessi and Elena Gheorghiu of McGill University. In this illusion, two side by side images of the same tilted and receding object appear to be leaning at two different angles. This incredible effect was first noticed in images of the famed Leaning Tower of Pisa, but it also works with paired images of other receding objects.

Leaning Tower Illusion
Leaning Tower Illusion

The leaning tower illusion is one of the simplest visual tricks one can produce, but it is also one of the most profound in relation to our understanding of depth perception. The tower on the right appears to be leaning more than the tower on the left. Yet these two photographs of the Leaning Tower are duplicates.

The illusion reveals the way in which the human visual system uses perspective to help construct our perception of 3-D objects. We say “construct” because the visual system has no direct access to 3-D information about the world. Our perception of depth results from neural calculations based on a set of rules.

These rules include the following: perspective (parallel lines appear to converge in the distance); stereopsis (our left and right eyes receive horizontally displaced images of the same object, resulting in the perception of depth); occlusion (objects near us occlude objects further away); chiaroscuro (the contrast of an object as a function of the position of the light source); and sfumato (the feeling of depth that one gets from the interplay of in- and out-of-focus elements in an image, as well as from the level of transparency of the atmosphere itself). Because the towers pictured in these paired images do not converge as they recede, the brain mistakenly perceives them as nonparallel and diverging.

Stare long enough at the skull in the ad and it will be “burned” into your vision even after you look away.

Yorick's Skull
Yorick’s Skull

To experience this antique illusion, stare at the X in Yorick’s left eye socket for about 30 seconds. Then look away at a flat surface such as a piece of paper, wall, ceiling or sky, and you will see Yorick’s afterimage as a ghostly apparition.

Vision scientists believe that the adaptation effect producing poor Yorick’s ghost largely takes place in the neurons of the retina. How can we know? Close your right eye and stare at the X again. Then look at the wall again to see the afterimage, but this time switch back and forth between closing one eye and the other. Only the left eye – which was open during the adaptation period – will reveal Yorick’s ghost. This means that the adaptation must have taken place only in neurons responding to stimulation from the left eye. If the adaptation had occurred in the binocular neurons of the brain (in the primary visual cortex and higher visual areas), you would see Yorick’s ghost with either eye.

Adaptation, in this case, is the process by which neurons habituate to, and eventually cease responding to, an unchanging stimulus. Once neurons have adapted, it takes a while for them to reset to their previous, responsive state: it is during this period that we see illusory afterimages. We see such images every day: after briefly looking at the sun or at a bright lightbulb or after being momentarily blinded by a camera flash, we perceive a temporary dark spot in our field of vision.

Science fiction author H.P. Lovecraft considered The Colour Out of Space his best story. In this 1927 classic tale of cosmic horror, a small Massachusetts farming community faces unspeakable evil from the outer reaches of the universe. The extraterrestrial villain is not a face-hugging or chest-bursting alien but something far more terrifying: a weird colour.

Slowly but surely the otherworldly colour mutates and destroys crops, insects, wild animals and livestock. It impregnates the land and the water. The unfortunate farmers who encounter the bizarre hue fall prey to insanity and untimely death.

Yellow Moon Blue Moon
Yellow Moon Blue Moon

Here we have two moons out of space. One yellow and one blue. Or are they? Actually both moons are exactly the same colour in this illusion by psychologist Akiyoshi Kitaoka of Ritsumeikan University in Japan; only the surrounding colours are different. If you don’t believe it, print the photo and cut out the two moons – you’ll find them to be identical. The appearance of colours is all about their context.

Neon Colour Spreading
Neon Colour Spreading

The colours from the small crosses appear to spread onto the white expanse surrounding each intersection. The effect resembles the glare from a neon light. This illusion was reported in 1971 by Dario Varin at the University of Milan, Italy, and a few years later by Harrie van Tuijl of the University of Nijmegen in the Netherlands. Its neural causes are currently unknown.

Our brains are exquisitely tuned to perceive, recognise and remember faces. We can easily find a friend’s face among dozens or hundreds of unfamiliar faces in a busy street. We look at each other’s facial expressions for signs of appreciation and disapproval, love and contempt. And even after we have corresponded or spoken on the phone with somebody for a long time, we are often relieved when we meet him or her in person and are able to put “face to the name”.

The neurons responsible for our refined “face sense” lie in a brain region called the fusiform gyrus. Trauma or lesions to this brain area result in a rare neurological condition called prosopagnosia, or face blindness. Prosopagnostics fail to identify celebrities, close relatives and even themselves in the mirror. Oliver Sacks is a well-known sufferer of prosopagnosia – the celebrated neurologist and author wrote about his own experiences in his book “The Mind’s Eye”.

But even those of us with normal face recognition skills are subject to many illusions and biases in face perception.

Illusion of sex
Illusion of sex

The side by side faces are perceived as female (left) and male (right). Yet both are versions of the same androgynous face. The two images are identical except that the contrast between the eyes and the mouth and rest of the face is higher for the face on the left than for the face on the right.

This illusion shows that contrast is an important cue for determining the sex of a face, with low-contrast faces appearing male and high-contrast faces spearing female. It may also explain why females in many cultures darken their eyes and mouths with cosmetics: a made-up face looks more feminine than a fresh face.

The eyes are the windows to the soul. That’s why we ask people to look us in the eye and tell us the truth. Or why we get worried when someone gives us the evil eye, or has a wandering eye. The English language is full of expressions that refer to where people are looking – particularly if they happen to be looking in our direction.

Here's looking at you kid
Here’s looking at you, kid

Vision researcher Pawan Sinha of the Massachusetts Institute of Technology shows us with this illusion that our brains have specialised mechanisms for determining gaze direction. In the normal photograph of Humphrey Bogart (left), the actor appears to be looking to his left,but in the photo negative (right) he appears to be looking in the opposite direction. Yet Bogart’s face does not look backward; only they eyes are reversed. Why? The answer is that we have specialised modules in our brain that determine gaze direction by comparing the dark parts of the eyes (the irises and pupils) with the whites. When the face is negative, the whites and irises appear to swap position. Our knowledge that irises are light rather than dark in a negative does not change our perception of this illusion.

Scientists did not invent the vast majority of visual illusions. Rather they are the products of artists who have used their insights into the workings of the human eyes and brain to create illusions in their artwork. Long before visual science existed as a formal discipline, artists had devised techniques to “trick” the brain into thinking that a flat canvas was three-dimensional or that a series of brushstrokes in a still life was in fact a bowl of luscious fruit. Thus, the visual arts have sometimes preceded the visual sciences in the discovery of fundamental vision principles through the application of methodical — though perhaps more intuitive — research techniques. In this sense, art, illusions and visual science have always been implicitly linked.

It was only with the birth of the op art (for “optical art”) movement that visual illusions became a recognized art form. The movement arose simultaneously in Europe and the U.S. in the 1960s, and in 1964 Time magazine coined the term “op art.” Op art works are abstract, and many consist only of black-and-white lines and patterns. Others use the interaction of contrasting colors to create a sense of depth or movement.

This style became hugely popular after the Museum of Modern Art in New York City held an exhibition in 1965 called “The Responsive Eye.” In it, op artists explored many aspects of visual perception, such as the relations among geometric shapes, variations on “impossible” figures that could not occur in reality, and illusions involving brightness, color and shape perception. But “kinetic,” or motion, illusions drew particular interest. In these eye tricks, stationary patterns give rise to the powerful but subjective perception of (illusory) motion.

Enigma Illusion
Enigma Illusion

Look at the centre of the above image and notice how the concentric green rings appear to fill with rapid illusory motion, as if millions of tiny and barely visible cars were driving hell-bent for leather around a track. Neuroscientist and engineer Jorge Otero-Millan of the Barrow Neurological Institute in Phoenix created this image as a reinterpretation of Enigma by Léviant, who unknowingly combined the Mackay Rays and the BBC wallboard. The illusory motion is driven by microsaccades: small, involuntary eye movements that occur during visual fixation. The precise brain mechanisms leading to the perception of this illusion are still unknown.

Enigma
Enigma

Created in 1981 by artist Isia Léviant, the painting titled Engima had long stumped scientists. Nobody knew why the lines appeared to jitter, how the concentric circles could move, or what exactly it was that gave us this two-dimensional illusion its appearance of depth. Even weirder, most people see an alteration in the color of the circle after a few moments of intense staring. Why did we feel so sucked in to the painting? Then in November 2008, neuroscientists at Barrow Neurological Institute in Phoenix, Arizona, discovered most of the blame goes to the microsaccades, the tiny involuntary movements that occur naturally in the eyes at various times.

Nerve Impulse
Nerve Impulse

This recent work by French artist José Ferreira, Nerve Impulse, not only reprises the Léviant effect but also illustrates how nerve cells relay information from the eye to the brain: triggered by a flood of chemicals called neurotransmitters, nerve cells (at top) send electrical signals racing down slender structures called axons. At the axon’s knoblike terminals, each nerve cell releases its own neurotransmitters, which diffuse across a narrow synapse gap and bind with receptors on the branchlike dendrites of the next nerve cell to trigger a new electrical signal. Each successive neuron passes the message to its neighbor, like a bucket brigade passing a pail of water.

The Gardner
The Gardner

Are you impressed with meals that look like one food but are actually made of something else? Tofu burgers and artificial crabmeat, for example, are not what they appear to be.

It’s actually an old trick. In medieval times fish was cooked to imitate venison during Lent, and celebratory banquets included extravagant (and sometimes disturbing) delicacies such as meatballs made to resemble oranges, trout prepared to look like peas and shellfish made into mock viscera. Recipe books from the Middle Ages and the Renaissance also describe roasted chickens that appeared to sing, peacocks redressed in their own feathers and made to breathe fire, and a dish aptly named Trojan hog, in which a whole roasted pig was stuffed with an assortment of smaller creatures such as birds and shellfish, to the amusement and delight of cherished dinner guests.

Unwelcome visitors were also treated to illusory food, but not for their own amusement. Instead they were served perfectly good meat that was made to look rotten and writhing with worms. Maybe not good enough to eat, but good enough to send your in-laws packing!

Food illusions are alive and well in the 21st century. Our buffet of contemporary lip-smacking illusions will appeal to both your eyes and your stomach … for the most part. We hope you’ll enjoy the spread. Bon appétit!

Foodscape
Foodscape

Art can be more than just a feast for your eyes. By using solely meats and breads in the image, photographer Carl Warner captures the feel of old sepia postcards from the late 19th century American prairie — complete with a breadstick – rail fence, serrano ham skies and a salami lane. Yum.

Warner’s work is another example of how the brain puts together information from multiple streams. Visual data from every point of the image are converted from light to electrochemical signals in the retina and then transmitted to the brain—where individual features are constructed from the information in the image. These discrete features are broadcast to multiple high-level visual circuits simultaneously: circuits that recognize faces, circuits that detect and characterize motion, circuits that recognize landscapes and places, and circuits that recognize and process food are just a few of the brain paths that receive this basic information.

In Warner’s art, both the landscape and the food-processing circuits are activated (the other circuits receive the information but ignore it as irrelevant because there are no faces, motion or other triggers in the image). And voilà! Our mind recognizes a delicious plate of cold cuts, as well as an overcast sky, in the same visual data.

Foodscape illusion busted :)
Foodscape illusion busted 🙂

Arcimboldo, Summer and Autumn Heads
Arcimboldo, Self-portraits

Arcimboldo’s composite heads demonstrate that, neurologically speaking, the whole can be much more than the sum of its parts. Clever arrangements of individual fruits, flowers, legumes and roots become exquisite portraiture in their entirety, such as in the artist’s self-portraits as Summer and Autumn.

The brain builds representations of objects from individual features, such as line segments and tiny patches of colour. You see a nose in the Summer portrait not because there is retinal cell that perceives noses but because thousands of retinal photoreceptors in your eye react to the various shades of colour and luminance in that area of the painting. High level neuronal circuits then match that information to the brain’s stored template for noses. The output from those same photoreceptors also activates the high-level object-tuned neurons that recognise turnips, figs and pickles, which is what makes images like these so much fun to look at.

Last but not least, Arcimboldo’s masterpieces also bring to mind the old adage that you are what you eat. “Avoid fruits and nuts”, advises Garfield 🙂

But go for broke with jelly beans!

Cherry topped cupcake
Cherry topped cupcake, Jelly Belly Candy Company

Pointillist painters such as Georges Seurat and Paul Signac juxtaposed multiple individual points to create color blends that were very different from the colors in the original dots. But in a very real sense, all art is pointillism. In fact, all visual perception is pointillism. Our retinas are sheets of photoreceptors, each sampling a finite circular area of visual space. Every photoreceptor then connects to downstream neural circuits that build our perception of objects, faces, loved ones and everything else. Thus, vision itself is largely a pointillist illusion, colored by a tremendous amount of “guesstimation” and filling in on the part of our brain. It doesn’t matter whether the painter uses brushstrokes or fields of dots to define surfaces.

The dots that compose the image of a cherry-topped cupcake are made from multicolored jelly beans, a technique that is not only clever but also delicious. Eat your heart out, Seurat.

We might take up jelly bean pointillism… Check this out! If this is not a bear activity, I don’t know what is 🙂

Jelly bean pointillism
Jelly-bean pointillism

If you agree that jelly bean pointillism is a great idea, you’ll also appreciate these replicas of famous masterpieces: Vincent Van Gogh’s Self Portrait in a Grey Felt Hat (left), Edvard Munch’s The Scream (below left) and Rembrandt’s The Anatomy Lesson of Dr. Nicolaes Tulp (below right). Everything in these images is fit for human consumption.

In an impossible figure, seemingly real objects — or parts of objects — form geometric relations that physically cannot happen. Dutch artist M. C. Escher, for instance, depicted reversible staircases and perpetually flowing streams. Mathematical physicist Roger Penrose drew his famously impossible triangle, and visual scientist Dejan Todorović of the University of Belgrade in Serbia created an impossible golden arch. These effects challenge our hard-earned perception that the world around us follows certain, inviolable rules. They also reveal that our brains construct the feeling of a global percept — an overall picture of a particular item — by sewing together multiple local percepts. As long as the local relation between surfaces and objects follows the rules of nature, our brains don’t seem to mind that the global percept is impossible.

Escher
Escher, Waterfall
Penrose Triangle
Penrose Triangle
Elusive Arch
Elusive Arch
Escher, Relativity
Escher, Relativity

Lego Homage to Escher
Lego Homage to Escher

Lipson and Shiu worked together on a Lego rendition of Escher’s Relativity. The original version, a popular lithograph first printed by Escher in 1953, depicts a surreal architectural structure in which there seem to be three separate sources of gravity. The stairs are double-sided and each stair is double-treaded. This was their fourth Escher picture rendered in Lego blocks.

Several contemporary sculptors recently have taken up the challenge of creating impossible art. That is, they are interested in shaping real-world 3-D objects that nonetheless appear to be impossible. Unlike classic monuments — such as the Lincoln Memorial in Washington, D.C. — which can be perceived by either sight or touch, impossible sculptures can be interpreted (or misinterpreted, as the case may be) only by the visual mind.

The Impossible Triangle sculpture in Perth forms part of Claisebrook Square and had its beginnings when local artists were invited to submit their ideas for a major public artwork commission as part of the East Perth Redevelopment project. The sculpture was created by local artist Brian McKay and architect Ahmad Abas and is based on the “Penrose Triangle” concept developed by the British Geneticist Lionel Penrose and his son Sir Roger Penrose, a Professor of Mathematics in the 1950’s.

The illusion of a triangle occurs when the sculpture is viewed along the privileged axis at only two locations. Only one location is accessible, as other structures get in the way at the other location.

It’s broken!

A Figment of Your Imagination

It’s a triangle!

A Figment of Your Imagination

It’s broken again!

A Figment of Your Imagination

Story from Scientific American Mind.